Сайт в помощь студенту Грамоте учиться – всегда пригодится


Скачать реферат полностью

Билет №1
Понятие о моделях и моделировании. Свойства моделей. Классификация моделей.
Модель в общем смысле есть создаваемый с целью получения и (или) хранения информации специфический объект (в форме мысленного образа, описания знаковыми средствами либо материальной системы), отражающий свойства, характеристики и связи объекта – оригинала  произвольной природы, существенные для задачи, решаемой субъектом.
Свойства любой модели таковы:

  • конечность: модель отображает оригинал лишь в конечном числе его отношений и, кроме того, ресурсы моделирования конечны;
  • упрощенность: модель отображает только существенные стороны объекта;
  • приблизительность: действительность отображается моделью грубо или приблизительно;
  • адекватность: модель успешно описывает моделируемую систему;
  • информативность: модель должна содержать достаточную информацию о системе - в рамках гипотез, принятых при построении модели.

Каждая модель характеризуется тремя признаками:

  • принадлежностью к определённому классу задач (по классам задач)
  • указанием класса объектов моделирования  (по классам объектов)
  • способом реализации (по форме представления и обработки информации). 

Рассмотрим более подробно последний вид классификации. По этому признаку модели делятся на материальные и идеальные. 
Материальные модели:

  • геометрически подобные масштабные, воспроизводящие пространственно- геометрические характеристики оригинала безотносительно его субстрату (макеты зданий и сооружений, учебные муляжи и др.);
  • основанные на теории подобия субстратно подобные, воспроизводящие с масштабированием в пространстве и времени свойства и характеристики оригинала той же природы, что и модель, (гидродинамические модели судов, продувочные модели летательных аппаратов);
  • аналоговые приборные, воспроизводящие исследуемые свойства и характеристики объекта оригинала  в моделирующем объекте другой природы на основе некоторой системы прямых аналогий (разновидности электронного  аналогового моделирования).

Аналоговое моделирование основано на том, что свойства и характеристики некоторого объекта воспроизводятся  с помощью модели иной, чем у оригинала физической природы. Целый ряд явлений и процессов существенно различной природы описывается аналогичными по структуре математическими выражениями. Описываемые аналогичными математическими структурами разнородные объекты можно рассматривать как пару моделей, которые с точностью до свойств, учитываемых в математическом описании, взаимно отображают друг друга, причем коэффициенты, связывающие соответственные (сходственные) параметры, являются в этом  случае размерными величинами.


1.

¶ Т

= ??

¶2 T

¶ t

¶ х2

 

2.

¶ С

= D?

¶2 T

¶ t

¶ х2

 

3.

¶ u

=

1

?

¶2 T

¶ t

RC

¶ х2

1- уравнение теплопроводности (закон Фурье), 2- уравнение диффузии (закон Фика), 3-уравнение электропроводности (закон Ома).
Идеальные модели

  • неформализованные модели, т.е. системы представлений об объекте оригинале, сложившиеся в человеческом мозгу;
  • частично формализованные:

вербальные – описание свойств и характеристик оригинала на некотором естественном языке (текстовые материалы проектной документации, словесное описание результатов технического эксперимента);
графические иконические – черты, свойства и характеристики оригинала, реально или хотя бы теоретически доступные непосредственно зрительному восприятию (художественная графика, технологические карты);
графические условные – данные наблюдений и экспериментальных исследований в виде графиков, диаграмм, схем;

  • вполне формализованные (математические) модели.

 

 

 

 

 

 

 

 

Билет №2
Классификация математических моделей по свойствам обобщенного объекта моделирования.
Первое свойство непрерывность и дискретность. Все те объекты, переменные которых (включая, при необходимости, время) могут принимать несчетное множество сколь угодно близких  друг к другу значений называются непрерывными или континуальными.
Следующее свойство модели — детерминированность или стохастичность. Если в модели среди величин имеются случайные, т. е. определяемые лишь некоторыми вероятностными характеристиками, то модель называется стохастической (вероятностной, случайной). В этом случае и все результаты, полученные при рассмотрении модели, имеют стохастический характер и должны быть соответственно интерпретированы.
Свойства сосредоточенности или распределенности  характеризуют объекты с точки зрения роли, которую играет в их модельном описании пространственная протяженность (на фоне скорости распространения физических процессов). Если пространственной протяженностью объекта можно пренебречь и считать, что независимой переменной является только время (протекающих в нем процессов), принято говорить об объекте с сосредоточенными параметрами. К числу таких объектов, которые описываются (в случае детерминированности и непрерывности) обыкновенными  дифференциальными уравнениями, относится подавляющее большинство механизмов, машин и вообще локальных технических устройств (расстояния между компонентами практически не влияют на исследуемые свойства и характеристики).
Статические и динамические модели. Статические модели относятся к объектам, практически неизменяющимся во времени или рассматриваемым в отдельные временные сечения. Динамические модели воспроизводят изменения состояний («движение») объекта с учетом как внешних, так и  внутренних факторов.
Для динамических моделей часто вводят понятия стационарность и нестационарность. Чаще всего    стационарность    выражается    в    неизменности  во  времени  некоторых  физических  величин:   стационарным является поток жидкости с постоянной скоростью, стационарна механическая система, в которой силы зависят только от координат и не зависят от времени.
С точки зрения общности методов анализа, возможностей математического аппарата и трудоемкости исследования чрезвычайно существенно деление объектов на линейные и нелинейные. Для первых справедлив принцип суперпозиций, когда каждый из выходов объекта характеризуется некоторой линейной формулой, связывающих его со значениями соответственных входных переменных.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                      
Билет №3
Адекватность и эффективность математических моделей. Общая логика построения моделей (технология математического моделирования).
Таким образом, можно сделать заключение: наилучшее в практическом отношении качество или эффективность любой модели достигается как разумный компромисс между близостью модели к оригиналу (адекватностью) и простотой, обеспечивающей возможность и удобство использования модели по её прямому назначению; чрезмерная  точность модели на практике не менее вредна, чем её неполнота и грубость.
Проблема моделирования состоит из трех задач:

  • построение модели (эта задача менее формализуема и конструктивна, в том смысле, что нет алгоритма для построения моделей);
  • исследование модели (эта задача более формализуема, имеются методы исследования различных классов моделей);
  • использование модели (конструктивная и конкретизируемая задача).

Математическое моделирование часто начинается с необходимости прогнозирования развития некоторого процесса во времени. Акт математического моделирования начинается с введения системы величин, полностью (с точки зрения тех практических потребностей, которые вызвали необходимость получения прогноза) характеризующих процесс. Следующим шагом является запись соотношений (зависимостей, связей) между введенными величинами. Эти соотношения возникают в конечном счете из наблюдения, из опыта и являются результатом интуитивного осмысления существа процесса. Суть математического моделирования состоит в получении строгих, однозначно трактуемых соотношения между введенными характеристиками процесса путем пренебрежения тем, что в нем с точки зрения целей, которые ставятся при моделировании, можно считать неглавным, несущественным. Эти соотношения можно изучать чисто математическими средствами, т.е. извлекать из них формальные следствия, отвлекаясь от их содержательного смысла.
Технология математического моделирования содержит следующие этапы: составление модели, идентификация и верификация модели, эксплуатация модели.
Этап составления модели. Угадывание величин, характеризующий реальный процесс, как можно более консервативных, как можно более независимых от времени, расстояний, местоположений, других характеристик реальных процессов в пределах точности, приемлемой для практических целей.
Этап разработки и реализации процедуры вычисления внутренних величин модели по ее внешним величинам. Первый вопрос, который здесь возникает: существует ли в принципе такая процедура. Для простых моделей ответ на этот вопрос часто бывает очевидным. Для более сложных моделей это является предметом специального математического анализа. Для многих типов моделей утверждения о том, что это имеет место, называются теоремами существования и единственности. Математические модели, для которых удалость доказать теорему существования и единственности, принято называть замкнутыми. После установления замкнутости модели необходимо разработать процедуру вычисления внутренних величин по внешним. Если эта процедура имеет вид аналитический формулы, то часто такую модель называют аналитической. Для тех замкнутых математических моделей, для которых аналитических формул, дающих внутренние величины, не существует (либо они существуют, но мы не сумели выявить этот факт) возникает проблема разработки численной процедуры, дающей значения внутренних величин и функций от них, которые нас интересуют, с заданной точностью. Эта проблема решается в рамках направления в математике, которое называется вычислительной математикой или численными методами. После этого необходимо составить программу на ЭВМ, реализующую эту численную процедуру.
Этап эксплуатации модели. Этот этап существенно зависит от предыдущего. Другими словами, этап эксплуатации зависит об объема информации, которая необходима для выполнения вычислений интересующих нас величин и от объема самих вычислений. В  зависимости от этих объемов можно выделить три основные формы эксплуатации математических моделей, если под эксплуатацией понимать акты осуществления прогноза развития моделируемого процесса или прогноза его свойств путем реализации процедуры вычисления внутренних величин модели по известных внешним величинам. Первая форма – это аналитические расчетные формулы. Вторая форма эксплуатации моделей – программы на ЭВМ, рассчитывающие интересующие нас функции внутренних величин по задаваемым внешним величинам. Эти формы трактуются как основные. Кроме этих форм имеются различные их промежуточные варианты и комбинации. Третья форма эксплуатации моделей – это так называемые проблемно-ориентированные интерактивные системы. Интерактивные системы вместе с программой, реализующей расчеты интересующих величин, содержат также средства, позволяющие в диалоге с ЭВМ манипулировать внешними величинами, визуализировать и обрабатывать различным образом результаты расчетов. Интерактивные системы являются результатом соединения традиционной технологии математического моделирования с информационной технологией, возникшей на базе ЭВМ.

 

 

 

 

 

 

 

 

Билет №4
Методы построения математических моделей: аналитические модели, модели идентификации.
Аналиические
На практике теоретические модели выступают в двух основных ролях. Прежде всего, они образуют структурную основу и являются главным исходным материалом всех без исключения теоретических построений. Любая теория, относящаяся к сфере точных наук, есть не что иное, как система взаимосвязанных аналитических моделей, подчиненная регулятивным принципам и универсальным  зависимостям более высокого уровня.
В поисковых областях научного знания теоретические модели, предназначенные для объяснения и описания явлений, не укладывающихся в существующие теоретические представления, играют роль главного инструмента познания.
Вместе с тем, модели этого класса являются основой для решения множества конкретных прикладных задач, в частности инженерно-технического характера, относящимся к хорошо изученным, не слишком сложным объектам и носящих типовой или рутинный характер. Расчет прочностных характеристик конструкций, расчеты параметров и характеристик электрических цепей. В каждом конкретном  случае модель исследуемого явления строится с учетом специфики природы и свойств объекта. Вместе с тем можно указать и некоторые общие методы и приемы.
В основе аналитических моделей, как правило, лежат так называемые балансовые соотношения, связывающие входные и выходные переменные или некоторые функционалы от этих переменных, имеющие смысл обобщенных сил, обобщенных потоков или координат. Типичные примеры: условие равновесия сил или моментов, действующих на некоторую механическую систему, равенство масс исходных и конечных продуктов некоторой химической реакции, равенство нулю суммы ЭДС и падений напряжений в электрической цепи и т.п. Все эти и прочие им подобные соотношения по существу представляют собой частные проявления законов сохранения вещества и энергии. К этой основе добавляется необходимая дополнительная информация, не вытекающая из этих соотношений, источником которой может быть либо специфическая для данного класса объектов теория, либо эксперимент.
Идентифицируемые модели
. Задача заключается в том, чтобы по наблюдаемым данным о входах и выходах выявить внутренние свойства объекта или, иными словами, построить модель. Решение задачи допускает применение двух стратегий:

    • Осуществляется активный эксперимент. На вход подаются специальные сформированные тестовые сигналы, характер и последовательность которых определена заранее разработанным планом. Преимущество: за счет оптимального планирования эксперимента необходимая информация о свойствах и характеристиках объекта получается при минимальном объеме первичных экспериментальных данных и соответственно при минимальной трудоемкости опытных работ. Но цена за это достаточно высока: объект выводится из его естественного состояния (или режима функционирования), что не всегда возможно.