Сайт в помощь студенту Грамоте учиться – всегда пригодится

Cкачать полностью

Содержание

  • Основное понятие неравенства
  • Основные свойства числовых неравенств. Неравенства содержащие переменную.
  • Графическое решение неравенств второй степени
  • Системы неравенств. Неравенства и системы неравенств с двумя переменными.
  • Решение рациональных неравенств методом интервалов
  • Решение неравенств, содержащих переменную под знаком модуля

 


1. Основное понятие неравенства

Неравенство [inequality] — соотношение между числами (или любыми математическими выражениями, способными принимать численное значение), указывающее, какое из них больше или меньше другого. Над этими выражениями можно по определенным правилам производить следующие действия: сложение, вычитание, умножение и деление (причем при умножении или делении Н. на отрицательное число смысл его меняется на противоположный). Одно из основных понятий линейного программированиялинейные неравенства вида
a1x1+ a2x2 +... + anxn * b,
где a1,..., an, b — постоянные и знак * — один из знаков неравенства, напр. ?, <, ?.
В матричной алгебре знак ? означает что все элементы матрицы, расположенной слева, не меньше (а хотя бы часть из них больше) соответствующих элементов матрицы, расположенной справа. В отличие от этого знак ? означает, что все элементы левой матрицы не меньше соответствующих элементов правой матрицы; в частности, все соответствующие элементы могут быть попарно равны. (Иногда применяются и другие обозначения.)

Классификация неравенств

Неравенства, содержащие неизвестные величины, подразделяются на:[1]

  • алгебраические
  • трансцендентные

Алгебраические неравенства подразделяются на неравенства первой, второй, и т. д. степени.
Пример:
Неравенство  3x^2-x^2+5 > 0 \!- алгебраическое, второй степени.
Неравенство 2^x > x+4 \!- трансцендентное.

2. Основные свойства числовых неравенств. Неравенства содержащие переменную

  • Если a>b , b<a;
  • Если a>b b>c a>c;
  • Если a>b a+c>b+c;
  • Если a+b>c a> c-b;
  • Если обе части верного неравенства умножить на одно и то же положительное число, то получится верное неравенство;
  • Если обе части верного неравенства умножить на одно и то же число и изменить знак на противоположный, то получится верное неравенство;
  • Множество всех х, при которых имеют смысл выражения f(x) и g(x), называется областью определения неравенства f(x) >g(x);
  • Два неравенства, содержащие одну и ту же переменную, называются равносильными, если они имеют общее множество решений (множество решений этих неравенств совпадают);
  • Если к обеим частям неравенства прибавить(или вычесть) любую функцию J(x). область определения которой содержит область определения неравенств, то получится новое неравенств, равносильное данному;
  • Если обе части неравенства f(x) >g(x) умножить (или разделить) на любую функцию J(x), определенную для всех значений переменной х из области определения данного неравенства, сохраняющую постоянный знак и отличную от нуля, то при J(x)>0 получится неравенство, равносильное данном, а при J(x)<0 равносильным данному является неравенство противоположного знака.

Неравенства с одной переменной. Пусть дано неравенство f(x) >g(x). Всякое значение переменной, при котором данное неравенство с одной переменной обращается в верное числовое неравенство, называется решением неравенства с одной переменной. Решить неравенство с переменной - значит найти все его решения или доказать, что их нет.
Два неравенства с одной переменной называются равносильными, если решения этих неравенств совпадают.

3. Графическое решение неравенств второй степени

  • Графиком квадратичной функции y = ах2 +bх + с является парабола с ветвями, направленными вверх, если а > 0, и вниз, если а < 0 (иногда говорят, что парабола направлена выпуклостью вниз, если а > 0 и выпуклостью вверх, если а < 0). При этом возможны три случая:
  • Парабола пересекает ось 0х (т. е. уравнение ах2 + bх + с = 0 имеет два различных корня). То есть, если а<0 то решением неравенства является множество [x1;x2].

y = ах2 +bх + с a>0 D>0 y = ах2 +bх + с a<0 D>0,

 

Парабола имеет вершину на оси 0х (т. е. уравнение ах2 + х + с = 0 имеет один корень, так называемый двукратный корень) То есть, если d=0, то при a>0 решением неравенства служит вся числовая прямая, а при a<0 единственная точка х1, являющаяся единственным корнем квадратного трехчлена ах2 + х + с

y = ах2 +bх + с a>0 D=0 y = ах2 +bх + с a<0 D=0,

  • Если d<0 то график квадратного трехчлена f(x) = ах2 +bх + с не пересекает ось Ох и лежит выше этой оси при a>0 и ниже ее при a<0 В первом случае множество решений неравенства есть вся числовая прямая, а во втором оно является пустым.
  •  

y = ах2 +bх + с a>0 D<0 y = ах2 +bх + с a<0 D<0,

 

4) Решить неравенство графическим способом
1) 3х2 -4х ;
3х2-4х.

  •  Пусть f(x) = 3х2 -4х - 7 тогда найдем такие х при которых f(x) ;
  • Найдем нули функции.

3х2-4х-7=0,
D=100,
Х=-1 Х=7\3.

 

f(x)  при х .
Ответ f(x)  при х .

  • х2 >-4x-5;

x2 +4x +5>0;
Пусть f(x)=х2 +4х +5 тогда Найдем такие х при которых f(x)>0,
X2+4x+5=0,
D=-4 Нет нулей.

 

Ответ .

4. Системы неравенств. Неравенства и системы неравенств с двумя переменными

  • Множество решений системы неравенств есть пересечение множеств решений входящих в нее неравенств.
  • Множество решений неравенства f(х;у)>0 можно графически изобразить на координатной плоскости. Обычно линия, заданная уравнением f(х;у)=0 ,разбивает плоскость на 2 части, одна из которых является решением неравенства. Чтобы определить, какая из частей, надо подставить координаты произвольной точки М(х0;у0) , не лежащей на линии f(х;у)=0, в неравенство. Если f(х0;у0) > 0 , то решением неравенства является часть плоскости, содержащая точку М0. если f(х0;у0)<0, то другая часть плоскости.
  • Множество решений системы неравенств есть пересечение множеств решений входящих в нее неравенств. Пусть, например, задана система неравенств:

.
Для первого неравенства множество решений есть круг радиусом 2 и с центром в начале координат, а для второго- полуплоскость, расположенная над прямой 2х+3у=0. Множеством решений данной системы служит пересечение указанных множеств, т.е. полукруг.

  • Пример. Решить систему неравенств:

Решением 1-го неравенства служит множество , 2-го множество (2;7) и третьего - множество .
Пересечением указанных множеств является промежуток(2;3], который и есть множество решений системы неравенств.

5. Решение рациональных неравенств методом интервалов

В основе метода интервалов лежит следующее свойство двучлена (х-а): точка х=? делит числовую ось на две части — справа от точки ? двучлен (х??)>0, а слева от точки ? (х-?)<0.
Пусть требуется решить неравенство (x-?1)(x-?2)...(x-?n)>0, где ?1, ?2...?n-1, ?n — фиксированные числа, среди которых нет равных, причем такие, что ?1 < ?2 <...< ?n-1 < ?n. Для решения неравенства (x-?1)(x-?2)...(x??n)>0 методом интервалов поступают следующим образом: на числовую ось наносят числа ?1, ?2...?n-1, ?n; в промежутке справа от наибольшего из них, т.е. числа ?n, ставят знак «плюс», в следующем за ним справа налево интервале ставят знак «минус», затем — знак «плюс», затем знак «минус» и т.д. Тогда множество всех решений неравенства (x-?1)(x??2)...(x-?n)>0 будет объединение всех промежутков, в которых поставлен знак «плюс», а множество решений неравенства (x-?1)(x-?2)...(x??n)<0 будет объединение всех промежутков, в которых поставлен знак «минус».

  • Решение рациональных неравенств (т.е неравенств вида P(x) Q(x) где – многочлены) основано на следующем свойстве непрерывной функции: если непрерывная функция обращается в нуль в точках х1 и х2 (х1;х2) и между этими точками не имеет других корней, то в промежутках(х1;х2) функция сохраняет свой знак.

Поэтому для нахождения промежутков знакопостоянства функции y=f(x) на числовой прямой отмечают все точки, в которых функция f(x) обращается в нуль или терпит разрыв. Эти точки разбивают числовую прямую на несколько промежутков, внутри каждого из которых функция f(x) непрерывна и не обращается в нуль, т.е. сохраняет знак. Чтобы определить этот знак, достаточно найти знак функции в какой либо точке рассматриваемого промежутка числовой прямой.

  • Для определения интервалов знакопостоянства рациональной функции, т.е. Для решения рационального неравенства, отмечаем на числовой прямой корни числителя и корни знаменателя, которые как и являются корнями и точками разрыва рациональной функции.

Решение неравенств методом интервалов
3. < 20.
Решение. Область допустимых значений определяется системой неравенств:

.

Для функции f(x) = – 20. Находим f(x):

откуда x = 29 и x = 13.
f(30) = – 20 = 0,3 > 0,
f(5) = – 1 – 20 = – 10 < 0.
Ответ: [4; 29).

х2+х-2
Пусть f(x)=х2+х-2 тогда найдем такие х при которых f(x)<0.
Найдем нули х=1, х=-2.

х3-4х<0
x(x2-4)<0
x(x-2)(x+2)<0
x=0 x=2 x=-2
 

6. Решение неравенств, содержащих переменную под знаком модуля

Решение неравенства, содержащего выражение , приводит к рассмотрению двух случаев:
 
Можно воспользоваться геометрической интерпретацией модуля действительного числа, согласно которой |a| означает расстояние точки а координатной прямой от начала отсчета О, а |a-b| означает расстояние между точками а и b на координатной прямой.
Можно использовать метод возведения в квадрат обеих частей неравенства, основанный на следующей теореме. Если выражения f(x) и g(x) при любых х принимают только неотрицательные значения, то неравенства f(x)>g(x) и (f(x))2>(g(x))2 равносильны.
Можно использовать свойства неравенств, содержащих переменную под знаком модуля:
системы неравенств

Решить неравенство:
.
Объединяя результаты получим .