Сайт в помощь студенту Грамоте учиться – всегда пригодится

Cкачать полностью

 

Контрольная работа

ТЕОРИЯ ВЕРОЯТНОСТЕЙ

1. В каждой из двух урн содержится 6 черных и 4 белых шаров. Из первой урны наудачу извлечен один шар и переложен во вторую. Найти вероятность того, что шар, извлеченный из второй урны, окажется черным.
     Решение
Пусть гипотезы       и        состоят в том что:

  1. Из первой урны извлекли черный шар, вероятность

            - извлекли белый шар, вероятность
Гипотезы несовместны и сумма их вероятностей равна 1. Значит, гипотезы образуют полную группу.
Пусть событие А состоит в том, что из второй урны извлекут черный шар. Если происходит событие Н1 то во второй урне станет 6+1=7 черных и 4 белых шара. В этом случае вероятность наступления А равна
 


Если же происходит событие Н2 то во второй урне станет 6 черных и 4+1=5 белых шаров. Вероятность наступления А
 


По формуле полной вероятности вычислим вероятность события А (из второй урны вынут черный шар)

Ответ: 0,60

   
5. Студент знает 40 из 50 вопросов программы. Найти вероятность того, что студент знает 2 вопроса, содержащиеся в его экзаменационном билете.
Решение
Для каждого вопроса вероятность того что студент его знает, одинакова
 



  
Найдем вероятность того, что в двух испытаниях событие А (студент знает вопрос) произойдет 2 раза по формуле Бернулли

Ответ: 0,64

11. Среднее число вызовов, поступающих на АТС в 1 мин., равно четырем. Найти вероятность того, что за 2 мин. поступит: 1) 6 вызовов; 2) менее шести вызовов; 3) не менее шести вызовов. Предполагается, что поток вызовов – простейший.

Решение

     Интенсивность потока
Время t=2


По формуле Пуассона, вероятность того что за время t поступит k вызовов, равна
1)

2)



3)

15. Среднее число самолетов, прибывающих в аэропорт за 1 мин, равно трем. Найти вероятность того, что за 2 мин прибудут: 1) 4 самолета; 2) менее четырех самолетов; 3) не менее четырех самолетов.

По формуле Пуассона, вероятность того что за время t поступит k вызовов, равна

1)

 


2)

3)

 

21-30. Для дискретной случайной величины Х, определенной в задаче:
1).написать ряд распределения; 2).построить многоугольник распределения;
3).вычислить математическое ожидание, дисперсию и среднее квадратическое отклонение; 4).построить интегральную функцию распределения.

   21. Вероятность того, что в библиотеке необходимая книга свободна, равна 0,3. В городе 4 библиотеки. СВ Х – число библиотек, которые посетит студент в поисках необходимой книги.
Решение
Случай ная величина Х может принимать такие значения
Х=1 – если студент найдет книгу в первой же библиотеке
Х=2 –если в первой не найдет а найдет во второй
Х=3- если не найдет в первой и второй а найдет в третьей
Х=4- если не найдет ни в первой, ни во второй, ни в третьей.
Найдем их вероятности.
Пусть событие А состоит в том что книга найдена. Р(А)=0,3.

Не найдена – вероятность противоположного события равна

 

1)Запишем ряд распределения Х


Х

1

2

3

4

Р

0,3

0,21

0,147

0,343

2) См. рисунок 1(21)
3) Математическое ожидание дискретной случайной величины

Дисперсия

 

 

 



Среднеквадратическое отклонение

4) Х – дискретная случайная величина. Найдем функцию распределения F(x)=P{x<X}- кусочно-постоянная функция
           

 

 

 

 

 

 

 

 
25. Три плавбазы вышли на путину. Вероятность того, что первая из них перевыполнит план равна 0,9; вторая – 0,8 и третья – 0,85. СВ Х – число баз, перевыполнивших план.
Случай ная величина Х может принимать такие значения
Х=0 если ни первая ни вторая ни третья базы не перевыполнили план
Х=1 – это может произойти если 1-я база перевыполнила план, а вторая и третья нет, или вторая перевыполнила а первая и третья нет, или третья первыполнила а первая и вторая нет.
Х=2 –если первая и вторая базы перевыполнили план а третья нет, или вторая и третья перевыполнили а первая нет, или первая и третья перевыполнили а вторая нет.
Х=3- если все три базы перевыполнили план
.
Найдем их вероятности.
По формулам суммы и произведения вероятностей, по формуле вероятности

 

 

 

1)Запишем ряд распределения Х


Х

0

1

2

3

Р

0,003

0,056

0,329

0,612

2) См. рисунок 1(25)
3) Математическое ожидание дискретной случайной величины

 

Дисперсия

 

 


Среднеквадратическое отклонение

4) Х – дискретная случайная величина. Найдем функцию распределения F(x)=P{x<X}- кусочно-постоянная функция